Effect of Ag–Au composition and acid concentration on dealloying front velocity and cracking during nanoporous gold formation

نویسندگان

  • Yu-chen Karen Chen-Wiegart
  • Steve Wang
  • Ian McNulty
  • David C. Dunand
چکیده

Nanoporous gold has many potential applications in various fields, including energy storage, catalysis, sensing and actuating. Dealloying of Ag–Au alloys under free corrosion conditions is a simple method to fabricate nanoporous gold. Here, we systematically investigate the dealloying rate of Ag–xAu alloy for a range of alloy compositions (x = 20–40 at.%) and nitric acid concentration (7.3–14.9 M) using in situ transmission X-ray microscopy. High-resolution in situ X-ray projections and ex situ tomographic reconstructions allow imaging of the dealloying front position during dealloying. The dealloying front velocity is constant with time, and depends exponentially on the alloy Ag/Au atomic ratio and the acid molar concentration. Only the leanest alloy, Ag–20 Au, shows a large macroscopic shrinkage in sample diameter ( 38%) after dealloying, which leads to crack nucleation and growth observed in real time during dealloying. Finite element modeling is used to estimate dealloying-induced stresses and strains, and sheds light on the cracks created by the diameter shrinkage. 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Formation of substrate-based gold nanocage chains through dealloying with nitric acid

Metal nanocages have raised great interest because of their new properties and wide applications. Here, we report on the use of galvanic replacement reactions to synthesize substrate-supported Ag-Au nanocages from silver templates electrodeposited on transparent indium tin oxide (ITO) film coated glass. The residual Ag in the composition was dealloyed with 10% nitric acid. It was found that cha...

متن کامل

Evolution of dealloying induced strain in nanoporous gold crystals.

We studied the evolution of dealloying-induced strain along the {111} in a Ag-Au nano-crystal in situ, during formation of nanoporous gold at the initial stage of dealloying using Bragg coherent X-ray diffractive imaging. The strain magnitude with maximum probability in the crystal doubled in 10 s of dealloying. Although formation of nano-pores just began at the surface, the greatest strain is ...

متن کامل

On the electrochemical dealloying of Al-based alloys in a NaCl aqueous solution.

The electrochemical dealloying of rapidly solidified Al-based alloys in a 1 M NaCl aqueous solution has been investigated using electrochemical measurements in combination with microstructural analysis. The results show that nanoporous metals (Au, Ag, Pd and Cu) with various morphologies can be fabricated through electrochemical dealloying of the Al-based alloys in the NaCl solution. The electr...

متن کامل

Ordered arrays of nanoporous gold nanoparticles

A combination of a "top-down" approach (substrate-conformal imprint lithography) and two "bottom-up" approaches (dewetting and dealloying) enables fabrication of perfectly ordered 2-dimensional arrays of nanoporous gold nanoparticles. The dewetting of Au/Ag bilayers on the periodically prepatterned substrates leads to the interdiffusion of Au and Ag and the formation of an array of Au-Ag alloy ...

متن کامل

On the microstructure of nanoporous gold: an X-ray diffraction study.

The evolution of the grain structure, internal strain, and the lattice misorientations of nanoporous gold during dealloying of bulk (3D) Ag-Au alloy samples was studied by various in situ and ex situ X-ray diffraction techniques including powder and Laue diffraction. The experiments reveal that the dealloying process preserves the original crystallographic structure but leads to a small spread ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013